10 research outputs found

    Parametric study of corn cob biochar (CCBc) yield via microwave pyrolysis

    Get PDF
    In the long-run, microwave pyrolysis can be a simpler and low energy-requiring alternative to conventional pyrolysis for the thermochemical conversion of biomass to useful products. However, there are still research gaps in its mechanism. Thus, this study investigated the various factors affecting the biochar yield using a half resolution (2k-1) factorial design on the microwave pyrolysis of corn cob wastes. A viable biochar product was produced within minutes of the reaction; wherein, the statistical analysis confirmed the exposure time, microwave output power and their interaction as significant in the CCBc yield. The highest yield obtained was 52.87% when exposure time and output power were set to 5 min and 450W, respectively. A general decreasing effect on the yield was observed from increasing exposure time and output power. This was due to the rapid heating experienced by the corn cob wastes causing the hydrocarbons to react and transform into permanent gases at higher temperatures. To confirm the carbon content of the CCBc, elemental analysis showed an average of 67.11% C at low time-low power (LTLP) of 450 W for 5 min and 81.32% C for the samples operated at high time-high power (HTHP) of 700 W for 10 min

    Design of biomass value chains that are synergistic with the food-energy-water nexus: strategies and opportunities

    Get PDF
    Humanity’s future sustainable supply of energy, fuels and materials is aiming towards renewable sources such as biomass. Several studies on biomass value chains (BVCs) have demonstrated the feasibility of biomass in replacing fossil fuels. However, many of the activities along the chain can disrupt the food–energy–water (FEW) nexus given that these resource systems have been ever more interlinked due to increased global population and urbanisation. Essentially, the design of BVCs has to integrate the systems-thinking approach of the FEW nexus; such that, existing concerns on food, water and energy security, as well as the interactions of the BVCs with the nexus, can be incorporated in future policies. To date, there has been little to no literature that captures the synergistic opportunities between BVCs and the FEW nexus. This paper presents the first survey of process systems engineering approaches for the design of BVCs, focusing on whether and how these approaches considered synergies with the FEW nexus. Among the surveyed mathematical models, the approaches include multi-stage supply chain, temporal and spatial integration, multi-objective optimisation and uncertainty-based risk management. Although the majority of current studies are more focused on the economic impacts of BVCs, the mathematical tools can be remarkably useful in addressing critical sustainability issues in BVCs. Thus, future research directions must capture the details of food–energy–water interactions with the BVCs, together with the development of more insightful multi-scale, multi-stage, multi-objective and uncertainty-based approaches

    How much land is available for sustainable palm oil?

    Get PDF

    Parametric study of corn cob biochar (CCBc) yield via microwave pyrolysis

    No full text
    In the long-run, microwave pyrolysis can be a simpler and low energy-requiring alternative to conventional pyrolysis for the thermochemical conversion of biomass to useful products. However, there are still research gaps in its mechanism. Thus, this study investigated the various factors affecting the biochar yield using a half resolution (2k-1) factorial design on the microwave pyrolysis of corn cob wastes. A viable biochar product was produced within minutes of the reaction; wherein, the statistical analysis confirmed the exposure time, microwave output power and their interaction as significant in the CCBc yield. The highest yield obtained was 52.87% when exposure time and output power were set to 5 min and 450W, respectively. A general decreasing effect on the yield was observed from increasing exposure time and output power. This was due to the rapid heating experienced by the corn cob wastes causing the hydrocarbons to react and transform into permanent gases at higher temperatures. To confirm the carbon content of the CCBc, elemental analysis showed an average of 67.11% C at low time-low power (LTLP) of 450 W for 5 min and 81.32% C for the samples operated at high time-high power (HTHP) of 700 W for 10 min

    Bio-aviation fuel: A comprehensive review and analysis of the supply chain components

    Get PDF
    The undeniable environmental ramifications of continued dependence on oil-derived jet fuel have spurred international efforts in the aviation sector toward alternative solutions. Due to the limited options for decarbonization, the successful implementation of bio-aviation fuel is crucial in contributing to the roster of greenhouse gas emissions mitigation strategies for the aviation sector. Since fleet replacement with low-carbon technologies may not be a feasible option, due to the long lifetime and significant capital cost of aircraft, “drop-in” alternatives, which can be used in the engines of existing aircraft in a seamless transition, may be required. This paper presents a detailed analysis of the supply chain components of bio-aviation fuel provision: feedstocks, production pathways, storage, and transport. The economic and environmental performance of different potential bio-feedstocks and technologies are investigated and compared in order to make recommendations on short- and long-term strategies that could be employed internationally. Hydroprocessed esters and fatty acids production pathway, utilizing second-generation oil-seed crops and waste oils, could be an effective immediate solution with the potential for substantial greenhouse gas emissions savings. Microalgal oil could potentially offer far greater yields of bio-aviation fuel and reductions in greenhouse gas emissions, but the technology for large-scale algae cultivation is inadequately mature at present. Fischer-Tropsch production pathway using lignocellulosic biomass has the potential for the highest greenhouse gas emissions savings, which could potentially be the solution within the medium- to long-term plans of the aviation industry, but further research and optimization are required prior to its large-scale implementation due to its limited technological maturity and high capital costs. In practice, the “ideal” feedstocks and technologies of the supply chains are heavily dependent on spatial and temporal criteria. Moreover, many of the parameters investigated are interlinked to each other and the measures that are effective in greenhouse gases emissions reduction are largely associated with increased cost. Hence, policies must be streamlined across the supply chain components that could help in the cost-effective and sustainable deployment of bio-aviation fuel. © Copyright © 2020 Doliente, Narayan, Tapia, Samsatli, Zhao and Samsatli
    corecore